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Surface parameterization is a fundamental tool in computer graphics and benefits many

applications such as texture mapping, morphing, and re-meshing. Many spherical

parameterization schemes with very nice properties have been proposed and widely used in

the past. However, it is well known that the spherical parameterization is limited to genus-0

models. In this paper, we first propose a novel framework to extend spherical

parameterization for handling a genus-n surface. In this framework, we represent a surface S

of arbitrary genus by a positive mesh O and several negative meshes Ni. Each negative

surface is used to represent a hole. A positive surface O is obtained by removing all holes in

the original surface S. Then, both positive and negative meshes are genus-0 and can be

spherically parameterized, respectively. To compute S, we can use a Boolean difference

operation to subtract negative Ni from a positive O. Next, we apply this novel framework to

generate genus-n-to-m mesh morphing application without restriction of n¼m. Finally,

there are many interesting non-genus-0 mesh morphing sequences generated. Copyright

# 2006 John Wiley & Sons, Ltd.

Received: 10 April 2006; Revised: 2 May 2006; Accepted: 10 May 2006

KEY WORDS: spherical parameterization; genus reduction; Poisson stitching; positive and
negative objects; metamorphosis

Introduction

RelatedWork

Surface parameterization of 3Dmodels is a fundamental

tool in computer graphics. Many graphics applications

benefit from surface parameterization, in particular:

texture mapping, morphing and re-meshing. Surface

parameterization embeds a given 3D surface onto

simpler domains such as a planar region, a sphere or

a simplicial complex. The planar parameterization

schemes1,2 often require the surface to be partitioned

using cuts into disk-like charts and therefore disconti-

nuity such as cutting seams is created. For texture-

mapping application, planar parameterization may be

the most natural way. However, for applications such as

morphing and re-meshing, the surface should better be

parameterized onto a domain topologically equivalent

to it. On the other hand, for a genus-0 surface, the sphere

is the most natural parameterization domain. Spherical

parameterization does not require cutting the surface

into several pieces. In the past, many spherical para-

meterization schemes3,4,5,6,7,9 with very nice properties

have been proposed and have beenwidely used inmany

applications.Haker et al.3 have computed spherical para-

meterization by conformal approximation of meshes

over the sphere. Alexa4 proposed a relaxation approach;

however this approach does not guarantee a valid

spherical embedding. Sheffer et al.5 proposed an angle-

based method with a non-linear optimization pro-

cedure. Their approach guarantees a valid spherical

embedding but it is, computationally, very intensive.

Gotsman et al.6 generalized the method of barycentric

coordinates for planar parameterization to compute the

spherical embedding by solving a quadratic system.

Praun et al.7 introduced a robust method for spherical

embedding. Furthermore, the minimization of their

proposed stretch-based measure is used to reduce the
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distortion. Later, Praun et al.8 consistently parameter-

ized several genus-0 models onto a user-specified

simplicial complex. Asirvatham et al.9 extend7 and

combine the idea in8 to create a spherical parameteriza-

tion under some constraints. Recently, Schreiner et al.10

and Kraevoy et al.11 consistently parameterize a set of

models of arbitrary genus onto a simplicial complex.

However, both techniques are very complicated for

practical implementation and are usually time-consum-

ing. Furthermore, these two schemes do not scale well in

terms of the number of models to be consistently

parameterized. In contrast, consistent spherical para-

meterization by Asirvatham et al.9 can be better scaled

for several objects. However, this approach is only valid

for genus-0 meshes.

Contribution

Planar parameterization computes a 3D-to-2D embed-

ding for a given 3D surface. Embedding a surface onto a

sphere or a simplicial complex is a 3D-to-3D mapping.

Intuitively, planar parameterization potentially incurs

much distortion than the other two kinds of embed-

dings. Since a simplicial complex is always chosen to be

very similar to a given 3D surface, therefore, this kind of

embedding can potentially have the least distortion

among these three parameterizations. However, this

kind of embedding always requires the surface to be

partitioned or clustered before embedding the surface

onto a chosen simplicial complex. The choice of a good

simplicial complex is also another issue. Furthermore,

whenever a consistent parameterization is required for a

set of models, the task of matching features makes this

kind of embedding even more complicated as men-

tioned in References [10,11]. In contrast, spherical

parameterization is very elegant with many nice

properties such as continuity, smoothness, acceptable

surface distribution over spherical areas, and no cuts or

partitions required. In addition, embedding onto the

spherical domain without or with consistency require-

ment is usually much simpler than that onto the

simplical complex. However, in contrast to the other

two embeddings, spherical embedding is inherently

valid for genus-0 surface only.

In this paper, we propose a novel framework to extend

spherical parameterization for handling genus-n sur-

face. Any previous spherical parameterization scheme4–

7,9 can be easily integrated into this framework. There-

fore, our proposed framework still shares some good

properties of spherical parameterizations. In the past,

there have been many 3D morphing schemes proposed.

Most of these schemes are concentrated on morphing

genus-0 models19,21–24 In contrast, we apply this

framework to create three-dimensional morphing

sequences between genus-n and genus-m models. With

this novel framework, we can easily allow n 6¼m in the

morphing application. In contrast to most of the

previous work10,11 both schemes always require n¼m.

Sometimes this requirement makes the morphing

sequence weird. The major contributions of our paper

are listed below:

� We generally extend spherical parameterization for

handling surface of arbitrary genus.

� Practical methods to detect holes and eliminate its

genus for a given model.

� New method to create a 3D morphing sequence

between genus-n-to-m meshes without restriction of

n¼m.

ApproachOverview

Our goal is to parameterize a surface S of arbitrary genus

onto the spherical domain. Our approach can be

described by the following steps:

� We detect possible holes on S.

� We attempt to remove each hole hi by using Poisson

stitching and also create a corresponding genus-0

mesh Ni.

� After removing holes, S becomes a genus-0 mesh

called O.

� Since O and Ni are all genus-0 meshes, we can apply

any spherical embedding to them.

� We termO as a positivemesh and eachNi is a negative

mesh. We can compute S by subtracting all Ni from O

using a Boolean difference operation.

In the next section, more details about the algorithm

will be given. Based on this approach, we present a new

3D non-genus-0 surface morphing scheme in three-

dimensional morphing of arbitrary genus.

AlgorithmDetails

For a given genus-n surface S, we need to compute a

positive genus-0O and several negative genus-0 meshes

N1, N2 . . .,Nn. A handle is defined as a region of S with

genus-1. Our algorithm will locate n handles in S by

constructing and analyzing a Reeb graph and removing

each handle by Poisson stitching.
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In spirit, our algorithm is closely related to Wood

et al.12 However, there are several distinctions from their

approach described as follows. First, our algorithm is a

polygonal-based approach and Wood et al. used a

volumetric-based approach. Their algorithm makes an

axis aligned sweep through the volume to locate

handles; however, this approach may fail to detect

holes with totally different orientations simultaneously.

If themodel is swept along theZdirection, those handles

parallel to the X–Y plane potentially cannot be located.

To avoid this problem, sometimes, human adjustment of

sweeping orientation is required; therefore, this method

is not robust and it can be tedious. In contrast, our

approach does not require sweeping along an axis and it

is also robust to detect all possible handles. Second, for

better computing efficiency, Wood et al. attempt to use a

triangle fan about the centroid of the handle to remove a

handle. Depending on the shape of the handle, the

triangles of the fan may intersect one another or

intersect other regions of the surface. For a better

solution, our approach removes a handle by a Poisson

stitching. In addition, Wood et al. also suggest a robust

volumetric approach to remove each handle but with

less efficiency.

Locating a Handle

Given a surface, we construct and analyze a Reeb

graph13 to locate handles. Reeb graph is a useful data

structure to encode the topology information of this

surface. Constructing a Reeb graph usually involves in

defining a scalar function f defined on a surface. Wood

et al.12 simply use a height function, i.e., a z value. The

height function is not a good scalar function to build a

correct Reeb graph for a surface. Therefore, the approach

employed by Wood et al. potentially fails to detect some

handles. For our approach, f is defined as a scalar

harmonic function on a surface with respect to selected

seed points.

With appropriate boundary conditions, a harmonic

function f satisfies the Laplace equation52f¼ 0.

If52f 6¼ 0, f is called the Poisson function. Considering

piecewise linear functions over triangulated manifolds,

we can find a scalar value based on Laplace equation for

each vertex on a triangular surface S by solving a sparse

linear system.14 For a discrete scalar harmonic function,

our boundary settings are: (1) we assign value 0 for a

selected source seed, and (2) value 1 for a selected sink

seed. The ideal candidates for source and sink seeds are

any two vertices on the surface with the largest possible

geodesic distance between them. Under these settings,

the resulting harmonic functions smoothly vary

between 0 and 1 over the surface S. A scalar function

f defined by a normalized geodesic distance is another

good choice to build a Reeb graph. Hilaga et al.15 use this

alternative to construct a Multiresolutional Reeb Graph

(MRG). However, to compute a smooth normalized

geodesic distance using Dijkstra’s algorithm on a

triangulated manifold S, tasks such as resampling,

subdivision of a mesh and adding extra short-cut edges

on S are required in their implementation. In contrast,

our approach does not require these extra steps but can

approximate a smooth f on S.

By using Euler’s Theorem, we can calculate the genus

value of a discrete 2-manifold model easily. Let us

consider a model that has jVj number of vertices, jEj
number of edges and jFj number of triangles. Let

X¼ jVj � jEj þ jFj, the genus value g of the surface is

equal to (2�X)/2. We use Euler’s theorem to compute the

genus of subsets of S while we are constructing a Reeb

graph. Furthermore, if the graph is not a tree, it must

contain a cycle. In graph algorithm, it is a very

straightforward task to locate cycles for a given graph

with cycles by a DFS of BFS graph traversal.

Once a scalar field f is determined over S, we can build

a Reeb graph for it. In,15 theMRG is constructed in a fine-

to-coarse order by requiring the domain of function f to

be divided into uniform intervals. Our purpose is to

build a Reeb graph with n cycles for a given genus-n

surface S. Our Reeb graph is constructed in a coarse-to-

fine order. Initially, we have an initial Reeb graphGwith

a root node containing all triangles of S. Next, we build a

Reeb graph by recursively calling the make_Reeb(G, n)

function, where G is a Reeb graph with n cycles to build.

The make_Reeb (G,n) consists of the following steps:

make_Reeb(G, n)

Step 1: we subdivide the domain of function f of G into

finer intervals and then we reconstruct a new

Reeb graph G0 as in Reference [15].

Step 2: If the number of cycles, denoted by m, in G0 is
equal to n, return G0.

Step 3: Now, we havem cycles, C1, C2, . . .,Cm andm 6¼n.

Each Ci corresponds to a subgraph of G0, called
Gi.

Step 4: For each Gi, we first compute the genus of sub-

surface contained in Gi, called gi and then

recursively call make_Reeb (Gi, gi).

Step 5: After we separate m circles from G0, assume we

have m0 non-cyclic subgraphs, H1, H2, . . .,Hm0

and each Hj is disjointed to each other.
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Step 6: For each Hj, we first compute the genus of sub-

surface contained in Hj, called gj and then

recursively call make_Reeb(Hj, gj).

Step 7: In accordance with the connectivity of triangles

contained in G1, G2, . . .,Gm and H1, H2, . . .,Hm0

we unify these subgraphs to obtain a new G0.
Step 8: return G0.

Finally, we use a DFS graph traversal again to detect

each cycle in our Reeb graph G reconstructed by

make_Reeb( ). Each cycle represents a handle (i.e., hole), a

region of Swith genus-1. Given a genus-n surface S, our

algorithm robustly finds n handles.

Removing aHandle and Spherical
Parameterization

ANon-SeparatingCut-PathDongaHandle. Genus

of surface S can also be defined as the largest number of

non-intersecting simple closed curves that can be drawn

on the surface at each specific time without separating

S.12 We can cut the model surface along such a curve

without separating the model into disjointed parts. In

this paper, we refer to such a curve as the non-separating

cut-path. We then proceed to find the non-separating cut-

path of each handle, i.e., hole as follows.

In Reeb graph, for each node of a cycle, we find its

corresponding region of S. To obtain a non-separating

cut-path of the hole, we first find a vertex of each node

which is nearest to the centroid of the handle. Then, we

connect vertices of each adjacent node using Dijkastra’s

shortest path algorithm. This forms an initial cut-path of

the handle. Each path between adjacency nodes in

Figure 1(a) is the shortest path between them. In this

manner, we can obtain an initial non-separating cut-

path, as indicated by the light grey path in Figure 1(b).

This cut-path may not be very smooth. The smooth cut-

path can be constructed by first growing outward a

region along two sides of an initial non-separating cut-

path. Grown patches are blue and green areas as shown

in Figure 1(b). Second, we formulate the problem of

finding a smooth path on grown patches as a network

flow problem as in Reference [16]. So, we construct a

dual graph of the grown patches. Each vertex of a dual

graph is a face of the grown patches. An edge between

two vertices in a dual graph means the corresponding

faces of the triangle share an edge in the original patches.

In our implementation, Edmond–Karp’s algorithm17 is

used to solve a maximum flow/minimum cut problem.

We compute Equation (1) to assign the capacity c(E) to

each edge E¼ (v1, v2), where v1 and v2 are its two end

vertices, and ~n1 and ~n2are the two normal directions of

the triangles sharing this edge. The first term attempts to

find a cut-path along the most convex or most concave

path. The second term v1 � v2k kattempts to find a cut-

path with the shortest possible geodesic distance. Figure

1(c) shows a smooth non-separating cut-path after this

optimization.

cðEÞ ¼ ~n1 �~n2
~n1k k ~n2k k þ v1 � v2k k (1)

BoundarySmoothing. In this section we propose the

main concept of handle-removing. Blue and green

triangles are boundary triangles while the darker paths

are their corresponding boundary edges. Vertices on

boundary edges are called boundary vertices. In this

section, we use a Poisson stitchingmethod to remove the

hole with two appropriate ‘cap meshes’ while removing

the interiors, i.e., blue and green triangles.

In order to fill the hole with a smooth boundary, we

must grow faces from the non-separating cut-path. Since

Figure 1. A smooth non-separating cut path along a handle.
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the cut-path is a closed path, we can define two sides

of the path. Our goal is to grow the face from both sides

of the path to keep the outer area of the grown region

most fit to the hole. However, how thick the region

should grow is a subjective problem and depends on the

model itself. Due to the difference in area and shape of

the triangles, the grown region might be irregular if we

simply grow one-ring face per step. Therefore, starting

from the cut-path, we first find a vertex of the

neighboring triangles that has the longest distance to

the path, and use this distance as the growing distance

per step. Figure 2 shows a hole in the handle of a teapot.

The red path is the cut-path and the green and blue

triangles are 1-ring neighboring faces of the path. The

yellow arrows in Figure 2(a) indicate the shortest and

longest distance between 1-ring neighboring vertices

and vertices on the cut-path. To achieve a smooth

boundary, we cannot simply grow boundary triangles

without considering the shape of the 1-ring neighboring

triangles. We want the filled hole to be as smooth as

possible, therefore, we use the longest distance indicated

by the right yellow arrow in Figure 2(a) as the growing

distance and grow the faces from the cut-path. Figure

2(b) shows the result of the growth.

Due to the discrete property of 3D models with

various sizes of triangles, we cannot always guarantee a

smooth boundary simply by using the above step. A

smooth boundary can make filling of holes more

compact with nice visual appearance. To smoothen

the boundary, we inflate the concave boundary edges or

subdivide the triangle that is too sharp along the two

boundary edges. For each boundary vertex v, we check

the total angle of a fan of triangles from v bounded by its

two adjacent boundary edges of v. If the total angle of

these triangles is smaller than a user defined threshold,

we inflate this concave boundary edges by the edges of

fan triangles. On the other hand, we require subdivision

of triangles if the boundary is too sharp. First we use a

recursive method to determine a new smooth boundary

edge. For a boundary vertex (the yellow vertex in Figure

2(c)), if the angle of the triangles covered by the fan from

one of the adjacent boundary edge to the other is larger

than a user-defined threshold (Figure 2(c)), we first pop

the two neighboring boundary edges out of the

boundary edge list and add a virtual edge (the red

dot-dashed line in Figure 2(d)) by connecting the two

end vertices (blue vertices in Figure 2(e)) of both

boundary edges. Again we check the angle until it is

smaller than a user-defined threshold. The final virtual

edge is the new smooth boundary edge (the red dot-

dashed line in Figure 2(f)).

Once we obtain the new boundary edge E¼ (vi, vj)

where vi and vj are its two end vertices, we subdivide the

triangles intersected with the new boundary edge by a

Figure 2. Growing boundary triangles and finding a new boundary edge.
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cutting plane P of this edge. In order to perform the line–

plane intersection test, we need to acquire the equation

of the cutting plane. Assume the equation of the cutting

plane is P : axþ byþ czþ d ¼ 0 where vector (a, b, c) is

normal to the cutting plane P. First, we calculate the

normal, Normalp, of the plane by the average of (niþ nj),

where

ni ¼ ðvj � viÞ �

P

k2RingðviÞ
NormalðfkÞ

RingðviÞk k

nj ¼ ðvi � vjÞ �

P

k2RingðvjÞ
NormalðfkÞ

RingðvjÞ
�
�

�
�

(2)

In the above equation, Normal(f) is the normal vector

of the triangle f andRing(v) is the set of one-ring triangles

of vertex v. For each end vertex of the new boundary

edge, we calculate the average normal vector of its one-

ring triangles. Then we take the cross product of this

average normal vector with the vector from current end

vertex to the other to obtain the approximated normal

vector from this end vertex. We perform the same steps

to the other end vertex of the new boundary edge.

Finally, we average these two normal vectors to obtain

the normal vector of the cutting plane. Second, we need

to calculate the parameter d of the cutting plane. Since

we want to approximate the new boundary edge by the

cutting plane, the two end vertices and their middle

point are planned to lie on the plane. Thus we calculate d

by following equations.

vm ¼ vi þ vj
2

;

d ¼ �ðaxþ byþ czÞ ¼ �Normalp � vm
(3)

With the equation of the cutting plane, we then

perform line–plane intersection test to detect the

intersection of the edges on the boundary triangles.

These intersections are the points where we will

subdivide those triangles.

PoissonStitching. Once we have two smooth bound-

aries Bi, i¼ 1, 2, on the two sides of the non-separating

cut-path, we build two ‘cap meshes’, Ci, i¼ 1, 2, to stitch

the hole. Those boundary triangles between the two cap

meshes will be removed. In our implementation, the cap

mesh is currently the shape defined by a uniform circle

located on the origin. To ensure that we have one-to-one

correspondence, the number of boundary vertices on a

cap mesh Ci is required to be equal to the number of

boundary vertices Bi. In addition, we also require the

boundary vertices on a cap mesh Ci to be distributed

according to the distance between adjacent vertices on

Bi. In general, the shape of the initial capmeshesmay not

match the shape of the boundary of the hole. Since the

vertices of the cap mesh and the boundary vertices have

one-to-one correspondence, we transform and warp the

capmesh tomake it fit to the hole. The basic concept is to

first transform each triangle of the cap mesh to maintain

boundary constraints and then to glue disjointed

triangles by solving a Poisson equation. This idea was

first proposed by Yu et al.18 to perform the object

merging. In this paper, we use this approach to modify

the geometry of the cap mesh implicitly through

gradient field manipulation to stitch the hole by solving

a Poisson equation. In this manner, we merge cap

meshes Ci, i¼ 1,2, with Bi, i¼ 1,2 in a smooth manner to

remove this handle or hole. Figure 3(a) and 3(b) show the

examples for removing the hole in the handle of a teapot

and the hole near the tail of the dragon. Both examples

show that the cap mesh now fits the shape of the

boundary of the hole well. Figure 3(c) shows the results

cited from Wood.12 Our results in Figure 3(d) look

smoother than their result.

Using Spherical Parameterization for Genus-n
Surface. Given a genus-n model S, once we remove

genus.n by the proposed method, we can get a genus-0

surface S0. In this paper, we call S0 as a positive surfaceO.

Next, we can apply CSG techniques to subtract S from S0.
As a result of subtraction, we get nsurfaces, Ni, i¼ 1,

2, . . ., n, respectively. In this paper, each Ni is called a

negative surface and represents a surface to fill a hole. In

reverse direction, we can also subtract all Ni, i¼ 1,

2, . . ., n from S0 to get S back. In our framework, each Ni,

i¼ 1, 2, . . ., n is the union of the following two parts: (1)

two cap meshes, and (2) boundary triangles (e.g. blue

and green regions in Figure 2(b)) on the two sides of the

non-separating cut-path.

Now, we represent a surface S of genus-n by a positive

surface O and a set of negative surfaces Ni, i¼ 1, 2, . . ., n.

Both positive and negative surfaces are genus-0.

Therefore, we can use nþ 1 spheres to parameterize

these nþ 1 surfaces independently, and thus we can

accomplish the spherical parameterization of genus-n

surface S. In our implementation, we use the approach in

Reference [6] to parameterize each surface onto a sphere.

Any other spherical parameterization can be used, too.

In summary, given a genus-n surface, its spherical
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parameterization consists of nþ 1 spherical parameter-

izations in our framework.

Three-Dimensional MeshMorphing
of Arbitrary Genus

So far, we have introduced a novel framework to

parameterize a surface of arbitrary genus using several

spherical parameterizations. To demonstrate the useful-

ness of the proposed framework, we apply this

framework to 3D morphing application as shown in

Figure 4. In this figure, given two surfaces S and S0, we

compute a corresponding positive mesh pair O and O0,
and two negative mesh sets: (N1,N2, . . .,Nn) and

(N1
0,N2

0, . . .,Nm
0) for holes. In the case of n 6¼m, we

can generate extra negative meshes called pseudo

negative meshes to have an equal number of paired

negative meshes. Then, we let (Ni, Ni
0) be a pair

of negative meshes. Next, for a given pair of spherical

embeddings, from,6 we first specify feature points and

then we independently compute a consistent spherical

embedding for each corresponding pair (e.g., (Ni,Ni
0) for

all i and (O, O0) for computing morphing using

Reference 9 or 19. Although n¼m, we sometimes need

to create extra pseudo-negative meshes for computing

better morphing. For example, given a feline model with

two holes in the tail and another model with two holes in

the head, it is better not to simply pair holes without

account of their positions in this situation. In this case,

the better solution is to pair a hole (i.e., negative mesh)

on a model with a pseudo hole (i.e., pseudo negative

mesh) on another model. It is easy to handle this

situation using the proposed scheme. Once each

consistent embedding is computed, we independently

compute a morphing sequence for each pair as shown in

Figure 4. Finally, we apply a Boolean difference

operation to subtract each intermediate negative object

from an intermediate positive object for obtaining a

desired morphing sequence. In our implementation, for

a given pair of spherical parameterizations and feature

points specified by users, we compute morphing using a

progressive morphing scheme proposed by Lin et al.19.

This technique19 can align user-specified features

between two input spherical embeddings. Other con-

sistent spherical parameterizations such as References

[4,9] can be used, too. But, Lin et al.’s19 procedure can

create less number of triangles for the intermediate

morphing models. Figures 4 and 5 show experimental

results using this proposed 3D morphing framework. In

Figure 4, a genus-1 teapot is morphed into a genus-1

mug. Using the proposed framework, we can perform

morphing between models with different genus such as

genus-2 to genus-1 (Figure 5(a, c, d)). Matching of

Figure 3. Removing a hole by the Poisson stitching, and comparing the result from,12 (c), with ours, (d).
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negative objects is necessary to deal with these cases,

since the user specifies where each negative object from

source model should be morphed to the negative object

of the target model. In addition, the user needs to specify

corresponding features, too. For example, in Figure 5(a),

there are two holes in the source model and one hole in

the target model. We can pair each hole in the source

model with the same hole in the target model. We

independently compute two intermediate negative

objects and then subtract them from the intermediate

positive object. On the other hand, if there exists a

negative object of the source model but there is no

corresponding negative object of the target model, we

can also assume that there is a virtual hole (negative

object) in the corresponding position of the target model

with very small size. Thus the hole in the morphing

sequence will become smaller gradually and finally

disappear. In contrast, if there is no hole in the source

model yet a hole exists in the target model, this method

will also work (see Figure 5(e)).

Conclusion and FutureWork
In this paper, we first present a new framework of

spherical parameterization for surface with arbitrary

Figure 4. A novel framework for non-genus-0 surface morphing using spherical parameterization.
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genus. Then, we apply this framework to generate 3D

genus-n-to-m mesh morphing without restriction of

n¼m. Experimental results verify the proposed frame-

work. Although we do not present any new spherical

parameterization scheme, the major contribution of this

paper is to make any spherical parameterization feasible

for non-genus surface. Any spherical parameterization

can be benefited from our contribution to handle a non-

genus surface. In addition, the proposed detection

scheme for holes is very robust. Wood et al.12 potentially

Figure 5. (a) Morphing from genus-2 object to genus-1object. (b) Morphing between a pig with a Triceratops’s hole and a

Triceratops with pig’s hole. (c) Morphing between genus-1 Dragon model and genus-2 Felin model. (d) Morphing between genus-

2 Feline model and genus-1 Lionmodel. (e)Morphing between a pig with no hole and a Triceratops with 1 hole. In this example, the

proposed scheme creates a virtual hole in the source model (pig) for the corresponding hole in the target model (Triceratops).

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2006 John Wiley & Sons, Ltd. 441 Comp. Anim. Virtual Worlds 2006; 17: 433–443

GENERATING GENUS-N-TO-M MESH MORPHING
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *



do not detect holes. In contrast, the proposed method

can do well. In comparison with other 3D morphing

techniques, the proposed framework makes 3D surface

morphing more general and much easier to implement

under spherical parameterization. Using the proposed

framework, genus-n-to-mmorphing becomes straight-

forward in contrast to the previous work.

This paper presents a first effort to parameterize a

genus-n surface using the spherical domain. There are

many interesting steps are left, to be further explored in

the future. First, we plan to apply the same framework to

remeshing and surface texturing soon. Second, currently

we use two caps to fill the hole. For most cases, this

solution is general enough. However, for the case such

as a hole within or crossing another hole, we cannot

simply fill each hole with two caps. We need a better

solution. In future, we may need a volumetric approach

such as Reference [20] to handlemore complicated cases.

Finally, for the CSG difference operation, holes are

reconstructed by subtracting the positive object by the

negative objects. The boundary regions that are

subtracted are then re-meshed. Hence the connectivity

of triangles in these regions is different in each frame,

although they look smooth in the morphing sequence.

The problem of how to maintain a consistent connec-

tivity for hole-regions in the morphing sequence is an

interesting research for future exploration.
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8. Praun E, Sweldens W, Schröder P. Consistent Mesh Para-
meterizations. SIGGRAPH 2001; 179–184.

9. Asirvatham A, Praun E, Hoppe H. Consistent spherical
parameterization. International Conference on Compu-
tational Science 2005; (2): 265–272.

10. Schreiner J, AsirvathamA, Praun E, Hoppe H. Inter-surface
mapping.ACMSIGGRAPH. ACMTransactions 2004; Graph.
23(3): 870–877.

11. Kraevoy V, Sheffer A. Cross-parameterization and compa-
tible remeshing of 3Dmodels.ACMTransactions on Graphics
(Proceedings of SIGGRAPH 2004) 2004; 23(3): 861–869.

12. Wood Z, Hoppe H, Desbrun M, Schröder P. Removing
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